Работа в интернете

Гид по выбору объективов. Оптический стабилизатор изображения

Гид по выбору объективов. Оптический стабилизатор изображения

© 2015 сайт

Объектив следует считать ключевым узлом оптического прибора под названием фотоаппарат. Всё верно: не матрицу, а именно объектив. Фотография – это изображение, и не что иное, как фотографический объектив формирует это изображение на светочувствительном материале. Матрица лишь преобразует созданное объективом изображение в цифровую форму.

Фотограф не обязан быть экспертом в области прикладной оптики, но наличие некоторого представления о том, как работает объектив вашей фотокамеры, не только не помешает вашему творческому росту, но и поможет сделать фотосъёмку более осознанной и управляемой.

Конструкция объектива

С основной задачей фотографического объектива – собрать свет, идущий от снимаемой сцены, и сфокусировать его на матрице или плёнке фотоаппарата – может справиться обычная двояковыпуклая линза. Однако качество изображения при этом будет весьма посредственным из-за обилия оптических аберраций . Чтобы обеспечить оптимальное качество картинки, в оптическую схему объектива вводятся дополнительные линзы, корректирующие световой поток, исправляющие аберрации и придающие объективу требуемые свойства. Число оптических элементов в современных объективах может в отдельных случаях достигать двух десятков и более. Элементы могут быть объединены в группы и все вместе они должны действовать как единая собирающая оптическая система.

Помимо оптического блока, т.е. системы линз, расположенных в определённой последовательности, конструкция объектива включает в себя также ряд вспомогательных механизмов, обеспечивающих наводку на резкость, управление диафрагмой, изменение фокусного расстояния (в зум-объективах), оптическую стабилизацию и пр.

Оправа, т.е. корпус объектива, соединяет все его компоненты воедино, а также служит для крепления объектива к фотоаппарату.

Хочется подчеркнуть, что фокусное расстояние не является в буквальном смысле «длиной» объектива и лишь косвенно указывает на его линейные размеры. Физически объектив может быть как длиннее, так и короче своего фокусного расстояния. Следует понимать, что из-за особенностей конструкции многих современных объективов их задняя главная плоскость может располагаться как в пределах системы линз, так и за её пределами.

В случае если задняя главная плоскость вынесена вперёд, фокусное расстояние объектива будет превышать его физические размеры. Такой объектив называется телеобъективом . Практически все современные длиннофокусные объективы являются телеобъективами, что позволяет уменьшить их габариты.

Если задняя главная плоскость расположена в середине объектива, то фокусное расстояние оказывается меньше расстояния от переднего элемента объектива до заднего фокуса. Таковы нормальные и умеренно короткофокусные объективы.

И, наконец, задняя главная плоскость может лежать позади объектива. В этом случае фокусное расстояние будет короче заднего фокального отрезка , т.е. расстояния от заднего оптического элемента до заднего фокуса. Такие объективы называются ретрофокусными объективами или объективами с удлинённым задним отрезком . Зачем нужна столь сложная схема? Ведь габариты она явно не экономит. Дело в том, что наличие поворотного зеркала в зеркальных фотоаппаратах налагает жёсткие ограничения на минимальную допустимую величину заднего фокального отрезка. Иными словами, зеркало не позволяет приблизить объектив вплотную к матрице или плёнке, а это значит, что короткофокусные объективы для зеркальных фотокамер должны проектироваться по ретрофокусной схеме.

Мерой светопропускающей способности объектива является диафрагменное число или число диафрагмы , представляющее собой отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы. Например, при фокусном расстоянии объектива 200 мм и диаметре отверстия диафрагмы 50 мм их отношение будет равно: 200 ÷ 50 = 4. Последнее обычно записывается как f/4 и означает, что диаметр отверстия диафрагмы в четыре раза меньше фокусного расстояния объектива.

Что будет, если мы уменьшим диаметр отверстия, скажем, до 25 мм? Число диафрагмы окажется равным: 200 ÷ 25 = 8. Таким образом, чем меньше относительное отверстие, тем больше диафрагменное число.

Почему говорят именно об относительном отверстии, а не просто о диаметре отверстия диафрагмы? Потому, что нас в данном случае не интересуют конкретные значения фокусного расстояния и диаметра отверстия, а лишь отношение между ними. Число диафрагмы – величина безразмерная. Независимо от своего фокусного расстояния все объективы, диафрагма которых установлена на f/8, будут пропускать одинаковое количество света. При этом очевидно, что фактический диаметр отверстия будет тем больше, чем больше фокусное расстояние объектива – главное, чтобы их отношение оставалось неизменным.

Для того чтобы уменьшить количество света, проходящего через объектив, в два раза, т.е. на одну ступень экспозиции (), необходимо в два раза уменьшить площадь отверстия диафрагмы. Его диаметр при этом уменьшится в √2 раза. В связи с этим диафрагменные числа, отстоящие друг от друга на одну ступень, различаются в √2, т.е. примерно в 1,414 раза, и образуют следующий стандартный ряд: f/1; f/1,4; f/2; f/2,8; f/4, f/5,6; f/8; f/11; f/16; f/22; f/32; f/45; f/64.

Минимальное доступное значение диафрагмы, т.е. максимальный размер относительного отверстия конкретного объектива, принято называть его светосилой .

В большинстве современных объективов используется механизм т.н. «прыгающей» или «моргающей» диафрагмы. Суть его в том, что вне зависимости от того, какое число диафрагмы выбрано для съёмки, диафрагма остаётся полностью открытой до самого момента спуска затвора и только тогда закрывается до заранее выбранного значения. После каждого снимка диафрагма автоматически возвращается в открытое состояние. Это позволяет осуществлять кадрирование, экспозамер и наводку на резкость при максимальной величине относительного отверстия (минимальном числе диафрагмы) и соответствующей ему максимально яркой картинке в видоискателе. В случае же если у фотографа возникает желание визуально оценить глубину резкости будущего кадра, диафрагму можно принудительно закрыть до рабочего значения, используя кнопку репетира диафрагмы.

Байонет

Объектив крепится к фотоаппарату посредством байонетного соединения. На хвостовике оправы объектива имеются лепестки (обычно их три), которым соответствуют пазы во фланце камеры. При установке объектива хвостовик вставляется во фланец и запирается поворотом на небольшой угол. Несимметричность лепестков исключает затрудняет неправильную ориентацию байонета. Чтобы отсоединить объектив необходимо нажать на кнопку и повернуть его в обратную сторону. См. «Смена объектива ».

По сравнению с резьбовым соединением байонет обладает двумя основными преимуществами: во-первых, смена объективов происходит быстрее, а во-вторых, обеспечивается более точная ориентация объектива относительно камеры, что необходимо для оптимального совмещения электрических контактов и механических приводов.

Помимо своей основной функции – крепления объектива к камере, – байонет должен также обеспечивать и функциональную связь между ними, согласовывая работу диафрагмы, автофокуса, стабилизатора и прочих устройств. Байонеты большинства современных фотографических систем (Canon EF, Sony E, Fujifilm X) не предполагают какой-либо механической связи между камерой и объективом – обмен информацией осуществляется исключительно через электронный интерфейс. В более традиционных байонетах (например, Nikon F) управление диафрагмой (а для старых моделей объективов ещё и автофокусом) реализовано посредством механических приводов.

Важнейшей характеристикой байонетного крепления является его рабочий отрезок . Рабочий отрезок – это расстояние от опорной поверхности объектива (или опорной поверхности фланца камеры) до фокальной плоскости, т.е. до плоскости матрицы или плёнки. Длина рабочего отрезка зависит от особенностей конструкции фотоаппарата. Так, у зеркальных камер рабочий отрезок значительно больше, чем у беззеркальных, поскольку поворотное зеркало не позволяет сделать корпус камеры слишком плоским.

Не следует путать рабочий отрезок с задним фокальным отрезком. Рабочий отрезок – это фиксированный параметр байонета, и его величина неизменна для всех камер и объективов в рамках данной фотографической системы. Задний фокальный отрезок – параметр конкретного объектива, и его величина может отличаться от величины рабочего отрезка, как в большую, так и в меньшую сторону, в зависимости от модели.

Фокусировка

В исходном положении объектив сфокусирован на бесконечность, т.е. в фокальной плоскости оказывается изображение бесконечно удалённого объекта. Чтобы сфокусировать объектив на более близких объектах, необходимо увеличить дистанцию между задней главной плоскостью объектива и плоскостью матрицы или плёнки. Иными словами, объектив должен быть как бы выдвинут навстречу объекту съёмки.

В простейших объективах с небольшим количеством элементов наводка на резкость осуществляется перемещением всего оптического блока внутри оправы объектива. Иногда движется только передняя линза. Хуже всего, когда она ещё и вращается при фокусировке, поскольку это весьма затрудняет использование поляризационных и градиентных фильтров.

В более сложных объективах применяется внутренняя фокусировка. Внешние размеры объектива в таком случае остаются неизменными, а смещение оптического центра достигается перемещением независимой группы линз внутри объектива. Частным случаем внутренней фокусировки является задняя фокусировка, при которой за наводку на резкость отвечает задняя группа элементов.

Большинство современных объективов предполагают использование автоматической фокусировки . Обычно в оправу автофокусных объективов встроен кольцевой электродвигатель (ультразвуковой или шаговый), который и приводит в движение фокусировочную группу линз. Исключение составляют лишь некоторые классические автофокусные объективы Nikon и Pentax, не имеющие собственного фокусировочного мотора. Мотор в данном случае встроен в камеру, а передача крутящего момента происходит посредством механической муфты.

Зум-объективы

Зум-объективами принято называть объективы с переменным фокусным расстоянием. Конструкция зум-объективов значительно сложнее конструкции дискретных объективов и включает ряд дополнительных оптических элементов, взаимное перемещение которых не только изменяет фокусное расстояние объектива, но и компенсирует возникающие при этом дополнительные оптические аберрации.

Отношение между максимальным и минимальным фокусным расстоянием зум-объектива называется его кратностью. Например, кратность зум-объектива с диапазоном фокусных расстояний 24-70 мм приблизительно равна: 70 ÷ 24 ≈ 3, что позволяет говорить о нём как о 3-х кратном зуме.

Оптический стабилизатор

В объективах, снабжённых оптическим стабилизатором изображения, одна из линз может при помощи электромагнитного привода перемещаться в плоскости, перпендикулярной оптической оси объектива, компенсируя тем самым вибрацию фотоаппарата и предотвращая смазывание изображения.

Об особенностях устройства и практическом применении стабилизированной оптики можно прочесть в статье: «Оптический стабилизатор. Нюансы использования IS и VR ».

Светофильтры

Практически все объективы могут использоваться вместе со светофильтрами . Чаще всего фильтры накручиваются на объектив спереди, для чего в оправе объектива предусмотрена специальная резьба. Однако в тех случаях, когда передняя линза объектива отличается необычайно большим диаметром или излишне выпуклой формой, традиционное использование фильтров физически затруднено, в связи с чем и резьба для фильтров может попросту отсутствовать. Существуют два основных подхода к решению этой проблемы. Супертелеобъективы обычно снабжаются выдвижной обоймой, в которую можно вложить стандартный светофильтр небольшого диаметра, после чего обойма вставляется внутрь объектива через специальную прорезь. Многие же сверхширокоугольные объективы в принципе не совместимы со стеклянными фильтрами и вместо этого имеют на хвостовике зажимы для тонких фильтров из пластиковой плёнки. Очевидно, что как внутреннее, так и заднее расположение светофильтров исключает возможность использования прозрачных фильтров для защиты передней линзы от грязи и царапин, предъявляя к вашей аккуратности повышенные требования.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

248815

Объективы.

В этой статье речь пойдет об объективах. Необходимо сразу оговориться, что рассчитана она в основном на тех, кто не очень разбирается в технических особенностях и терминах. По этой причине часть информации будет опущена, а основная часть будет подана максимально просто.

Зачем нужны объективы.

Вероятно, каждый, кто только что приобрел или собирается приобрести зеркальную камеру, задавался вопросом: для чего, собственно, нужно такое разнообразие объективов, если в комплекте с камерой уже поставляется объектив (так называемый «китовый»). Для обычных повседневных задач такого объектива, скорее всего, будет достаточно. Однако есть мнение, что чем дороже и качественнее объектив, тем лучше он снимает, и это верно, но надо учитывать, что фотографирует в первую очередь не техника, а человек. Объектив лишь инструмент, дающий большие возможности, и при правильном его подборе позволит получить недостающие лично вам характеристики.

Таким образом, в первую очередь нужно решить, для каких целей требуется объектив, так как бывают не только универсальные, подходящие под многие задачи, но и очень специфичные объективы, например, телеобъективы или tilt-shift объективы.

Итак, что же такое объектив? Википедия гласит: объекти́в - оптическое устройство, предназначенное для создания действительного оптического изображения. В оптике рассматривается как равнозначное собирающей линзе, хотя может иметь иной вид, например «Камера-обскура». Обычно объектив состоит из набора линз (в некоторых объективах - из зеркал), рассчитанных для взаимной компенсации аберраций и собранных в единую систему внутри оправы. Проще говоря, это система линз в оправе, фокусирующая изображение на чувствительном элементе фотоаппарата (пленке либо матрице).

На сегодняшний день на рынке присутствует огромное количество различных объективов в широком ценовом диапазоне, производятся они разными фирмами и имеют различные характеристики. Каждый производитель фотоаппаратов (например Canon, Nikon и т.д.) выпускает «линзы» для своих устройств, которые имеют свой собственный разъем для объектива – так называемый «байонет». Кроме того, существуют сторонние предприятия, выпускающие объективы для разных марок фотокамер. Самые известные из них – Sigma и Tamron, менее распространены объективы Tokina, Samyang и др. При выборе стоит уточнять, стабильно ли работает объектив с вашей камерой и желательно проверить объектив перед покупкой. Впрочем, при выборе объектива фирма-производитель далеко не главное, на что стоит обращать внимание. Гораздо важнее характеристики, о которых речь пойдет дальше.

Характеристики объективов

Основные характеристики объективов таковы:

Фокусное расстояние (и возможность его изменения);

Угол поля зрения объектива;

Светосила;

Максимальное относительное отверстие (иногда неправильно называемое светосилой);

Тип байонета или диаметр резьбы для крепления к камере - для сменных фотографических или киносъемочных объективов.

Помимо них есть еще некоторые дополнительные характеристики (различного вида аберрации, разрешающая способность и т.д.), касаться которых мы не будем.

Фокусное расстояние объектива

Работа объектива заключается в том, чтобы сформировать изображение на чувствительном элементе (пленке либо матрице) камеры. Как известно из школьного курса физики, фокусным расстоянием называется расстояние от центра линзы до фокуса (точки пересечения лучей или их продолжения, преломленных собирающей/рассеивающей системой).

Объектив представляет собой подобного рода собирающую систему, которая фокусирует попадающий в нее свет на матрице. Фокусным расстоянием объектива считается расстояние от оптического центра системы до чувствительного элемента.

Если забыть о теории и выразиться проще, то фокусное расстояние объектива характеризует способность объектива приближать объекты. Чтобы не путаться, можно запомнить простую формулу: чем больше фокусное расстояние, тем ближе будет объект съемки. Далее представлены фотографии, сделанные из одной и той же позиции, но с помощью объективов с разным фокусным расстоянием:

Наглядное представление принципа работы простейшего объектива:

Фокусное расстояние измеряется в миллиметрах. Как правило, его значение указано на самом объективе.

По диапазону значений фокусного расстояния объективы делятся на фиксы и вариобъективы. Фикс - любой объектив с фиксированным фокусным расстоянием, жаргонное слово, сокращение, используемое для противопоставления вариообъективам.

Вариообъектив - объектив с переменным фокусным расстоянием (трансфокатор, «зум»).

У каждого типа объективов есть как плюсы, так и минусы, которые, впрочем, довольно субъективны. Фиксы, к примеру, гораздо легче и компактнее, но зумы гораздо более универсальны в плане фокусных расстояний. В некоторых ситуациях (свадебный репортаж, например) зум позволит получить необходимую композицию с минимальной затратой усилий на замену объективов и постоянные перемещения. Если же сравнивать фиксы и зумы, близкие по светосиле и фокусным расстояниям, то можно получить порой двукратное превосходство зума в весе, что вы непременно ощутите, да и стоимость будет выше.

Помимо фокусного расстояния существует еще одна немаловажная деталь, о которой стоит знать фотолюбителям – кроп-фактор матрицы.

Дело все в том, что существуют так называемые «нормальные» объективы – восприятие перспективы на фотографиях, полученных с помощью такого объектива, максимально приближено к восприятию перспективы человеческим глазом. Параметры таких объективов были рассчитаны во времена пленочных фотоаппаратов, в которых использовалась 35 мм пленка. Фокусное расстояние такого объектива получилось 50 мм.

Однако, матрицы большинства современных зеркальных камер по размеру меньше, чем кадр на 35 мм пленке (кроп-матрица). Из-за этого часть изображения по краям, захватываемая объективом, попросту не попадает на матрицу, то есть угол обзора уменьшается. Поэтому к фотоаппаратам с кроп-матрицей для удобства применяется термин «эквивалентное фокусное расстояние» - такое фокусное расстояние, при котором угол зрения будет такой же, что и на пленке при реальном фокусном расстоянии.

Проще говоря, современные зеркальные камеры с кроп-матрицей так устроены, что фотографии получаются немного приближенными по сравнению с кадрами, полученными на пленочный фотоаппарат или полноформатные (full frame) матрицы. Надо заметить, что объективы на всех форматах дают одно и то же изображение, изменение размера которого зависит только от размера матрицы. Для понимания приведена картинка ниже. Красная рамка показывает границы обычного кадра 36×24 мм, синяя - границы кадра цифровой камеры 22,5×15 мм.

Обычно в описаниях фотоаппаратов указывается так называемый «кроп-фактор» - коэффициент, показывающий во сколько раз линейные размеры матрицы меньше размеров пленочного кадра. Как правило, у современных зеркальных камер это значение в пределах 1,3-2,0. Среди них наиболее распространены кроп-факторы 1,5 и 1,6 (стандарт APS-C) и 2 (стандарт 4:3(4/3 и Микро 4/3)). Для расчета эквивалентного фокусного расстояния надо фокусное расстояние, указанное на объективе, умножить на кроп-фактор фотоаппарата. Например, нужно сравнить два объектива, предназначенные для разных камер:

1. Объектив SMC Pentax-DA имеет маркировку «18-55 mm». Кроп-фактор фотоаппарата, на котором установлен данный объектив, - 1,53. Умножив фокусные расстояния на кроп-фактор, получаем эквивалентные фокусные расстояния (ЭФР): 28-84 мм.

2. Объектив фотоаппарата Olympus C-900Z имеет маркировку «5,4-16,2 mm». Кроп-фактор данного аппарата равен 6,56. Умножив, получаем ЭФР объектива: 35-106 мм.

Теперь, мы можем их сравнить. Первый обладает более широким углом зрения при широкоугольном положении, второй - более длиннофокусным телеположением.

Классификация объективов по углу поля зрения (фокусному расстоянию).

Широко применяется классификация фотографических объективов по углу поля зрения или по фокусному расстоянию, отнесённому к размерам кадра. Эта характеристика во многом определяет сферу применения объектива.

Схематическое обозначение фокусного расстояния и их угол поля зрения: 1.Сверхширокоугольный объектив. 2. Широкоугольный объектив. 3. Нормальный объектив. 4. Телеобъектив. 5. Супер-телеобъектив

Нормальный объектив - объектив, у которого фокусное расстояние примерно равно диагонали кадра. Для 35-мм плёнки нормальным считается объектив с фокусным расстоянием 50 мм, хотя диагональ такого кадра равна 43 мм. Угол поля зрения нормального объектива от 40° до 51° включительно (часто около 45°). Угол обзора такого объектива примерно равен углу обзора человеческого глаза. Такие объективы не вносят искажения в перспективу кадра.

Широкоугольный (короткофокусный) объектив - объектив, с углом поля зрения от 52° до 82° включительно, фокусное расстояние которого меньше широкой стороны кадра (20-28 мм). Объекты на заднем плане при съемке этим объективом меньше, чем мы видим. Часто используется для съёмки в ограниченном пространстве, например интерьеров, но может давать искажения. Также используется для съемки пейзажей и архитектуры.

Сверхширокоугольный объектив - объектив, у которого угол поля зрения 83° и более, а фокусное расстояние меньше малой стороны кадра (менее 20 мм). Сверхширокоугольные объективы обладают преувеличенной передачей перспективы и часто используются для придания изображению дополнительной выразительности. Объективы fish-eye (рыбий глаз) имеют угол обзора около 180° и дают еще больше искажений.

Портретный объектив - если данный термин применяется к диапазону фокусных расстояний, то обычно подразумевается диапазон от диагонали кадра до трёхкратного её значения. Для 35-мм плёнки портретным считается объектив с фокусным расстоянием 50-130 мм и углом поля зрения 18-45°. Понятие портретного объектива условно и относится кроме фокусного расстояния к светосиле и характеру оптического рисунка в целом. Объективы достаточно универсальны. На фотографиях, полученных с помощью этого объектива, объекты на заднем плане меньше, чем мы видим. Другой вопрос в том, что при съемке портретов обычно задний фон стараются размыть.

Длиннофокусный объектив (часто именуемый телеобъективом) - объектив, у которого фокусное расстояние значительно превышает диагональ кадра (150 мм). Имеет угол поля зрения от 10° до 39° включительно, и предназначен для съёмки удаленных предметов.

Светосила объектива.

Светосила – второй по важности параметр объектива. Чаще всего под светосилой объектива неправильно понимают значение знаменателя относительного отверстия (диафрагменное число). Диафрагменное число, значение которого нанесено на объектив, лишь численно характеризует светосилу.

Вообще говоря, светосила объектива – величина, которая характеризует степень ослабления света объективом. Светосила, точнее, геометрическая светосила, пропорциональна площади действующего отверстия объектива, деленной на квадрат фокусного расстояния (квадрату так называемого относительного отверстия оптической системы). То есть, она зависит от геометрических параметров - диаметра отверстия и длины. Действующее отверстие объектива – отверстие, определяющее диаметр пучка входящего света, попадающего на пленку или матрицу. Если рассматривать объектив как простую трубку, то при одном и том же ее диаметре больше света пройдет через менее короткую. Соответственно, чтобы улучшить светосилу более длинной трубки, нам придется увеличить ее диаметр. При прохождении через объектив, свет поглощается стеклом, рассеивается поверхностью линз, испытывать различные отражения внутри объектива и т.д. Светосила, учитывающая все эти потери, называется эффективной светосилой.

Как уже говорилось выше, объектив – это система линз в оправе, через которую проходит свет и регистрируется светочувствительным элементом. В этой оправе находится регулируемый «ограничитель» светового потока, называемый диафрагмой.



Чем шире открыта диафрагма, тем больше света попадет на матрицу, тем светлее получится снимок. Ниже проиллюстрирована зависимость размера отверстия от диафрагменного числа.

Перевод диафрагмы на одно деление изменяет относительное отверстие в ≈1,41 раза, освещенность при этом изменяется в два раза. Шкала диафрагмы стандартна и выглядит следующим образом: 1:0,7; 1:1; 1:1,4; 1:2; 1:2,8; 1:4; 1:5,6; 1:8; 1:11; 1:16; 1:22; 1:32; 1:45; 1:64. Впрочем, первые диафрагменные числа на объективах могут и не совпадать со стандартными (1:2,5; 1:1,7). Обычно диафрагменные числа указываются на объективах и указывают на максимально открытую диафрагму на заданных фокусных расстояниях.

С помощью диафрагмы можно не только регулировать количество света, но и устанавливать необходимую глубину резкости (ГРИП). Другими словами, регулировка диафрагмы влияет на размытие фона. Чем больше открыта диафрагма, тем меньше будет глубина резкости (более размытый фон). Этот прием обычно используется для портретов, то есть там, где нужен сильный акцент на объект переднего плана. Открытая диафрагма формирует круг, частично закрытая – многоугольник. От вида этого многоугольника зависит «боке» - художественное размытие точечных источников света, объектов, не попавших в фокус. Чем больше граней (лепестков диафрагмы), тем красивее «боке».




На объективах может быть указано одно или два (для зумов) значения диафрагменного числа. То есть, встречается постоянная и переменная светосила объектива.

Постоянная светосила характерна для фиксов. У зумов же изменение фокусного расстояния влечет за собой изменение светосилы (как мы помним, она обратно пропорциональна квадрату фокусного расстояния). Однако и у зумов может быть постоянная светосила. Это довольно удобно, например, при съемке со вспышкой, так как нет нужды учитывать изменение диафрагмы. Стоят такие объективы всегда несколько дороже ввиду усложнения конструкции.

Типичные значения знаменателя максимального относительного отверстия объективов разных классов:

Мелкосерийный уникальный объектив для космической программы НАСА Carl Zeiss Planar 50mm f/0.7: 0,7.

Leica Noctilux для дальномерной фотокамеры: 0,95.

Юпитер-3 для дальномерной фотокамеры (оптическая схема «зоннар»): 1,5.

Объективы с постоянным фокусным расстоянием для зеркальной фотокамеры: 1,2 - 4.

Цифровая автофокусная компактная камера: 1,4 - 5,6.

Вариообъектив среднего ценового диапазона для зеркальной фотокамеры: 2,8 - 4.

Недорогой вариообъектив для зеркальной фотокамеры: 3,5 - 5,6.

Автофокусная компактная фотокамера: 5,6.

Плёночная компактная фотокамера: 8 - 11.

Для понимания всего вышесказанного: более светосильный объектив – тот, у которого значение диафрагменного числа меньше. Для любительской съемки среднего значения f/4 обычно вполне достаточно. Поэтому новичкам можно рекомендовать недорогие зумы f/3,5 - f/5,6, которых хватит для решения большинства повседневных задач.

Стабилизаторы и ультразвуковые моторчики.

При съемке в условиях плохой освещенности или с большой выдержкой нередко кадры получаются смазанными. Из-за дрожания рук или иных причин кадр может быть безнадежно испорчен. Тут на помощь приходят технологии, помогающие стабилизировать изображение.

В фотоаппарат встроены специальные сенсоры, работающие по принципу гироскопов или акселерометров. Эти сенсоры постоянно определяют углы поворота и скорости перемещения фотоаппарата в пространстве и выдают команды электрическим приводам, которые отклоняют стабилизирующий элемент объектива или матрицу. При электронной (цифровой) стабилизации изображения углы и скорости перемещения фотоаппарата пересчитываются процессором, который устраняет сдвиг.

Стабилизаторы бывают трех видов: оптический, с подвижной матрицей и цифровой.

Оптический стабилизатор изображения.

В 1994 году фирмой Canon была представлена технология, получившая название OIS (англ. Optical Image Stabilizer - оптический стабилизатор изображения). Стабилизирующий элемент объектива, подвижный по вертикальной и горизонтальной осям, по команде с сенсоров отклоняется электрическим приводом системы стабилизации так, чтобы проекция изображения на плёнке (или матрице) полностью компенсировала колебания фотоаппарата за время экспозиции. В результате при малых амплитудах колебаний фотоаппарата проекция всегда остаётся неподвижной относительно матрицы, что и обеспечивает картинке необходимую чёткость. Однако наличие дополнительного оптического элемента немного снижает светосилу объектива.

Технология оптической стабилизации была подхвачена другими производителями и хорошо зарекомендовала себя в целом ряде телеобъективов и камер (Canon, Nikon, Panasonic). Разные производители называют свою реализацию оптической стабилизации по-разному:

Canon - Image Stabilization (IS)

Nikon - Vibration Reduction (VR)

Panasonic - MEGA O.I.S.(Optical Image Stabilizer)

Sony - Optical Steady Shot

Tamron - Vibration Compensation (VC)

Sigma - Optical Stabilization (OS)

Для плёночных фотоаппаратов оптическая стабилизация - единственная технология борьбы с «шевелёнкой», поскольку саму пленку двигать, как матрицу цифрового фотоаппарата, не получится.

Стабилизатор изображения с подвижной матрицей.

Специально для цифровых фотоаппаратов компания Konica Minolta разработала технологию стабилизации (англ. Anti-Shake - антитряска), впервые применённую в 2003 году в фотокамере Dimage A1. В этой системе движение фотоаппарата компенсирует не оптический элемент внутри объектива, а его матрица, закреплённая на подвижной платформе.

Объективы за счет этого становятся дешевле, проще и надёжнее, стабилизация изображения работает с любой оптикой. Это важно для зеркальных фотоаппаратов, имеющих сменную оптику. Стабилизация со сдвигом матрицы, в отличие от оптической, не вносит искажений в картинку (быть может кроме вызванных неравномерной резкостью объектива) и не влияет на светосилу объектива. В то же время считается, что стабилизация сдвигом матрицы менее эффективна, нежели оптическая стабилизация.

С увеличением фокусного расстояния объектива эффективность Anti-Shake снижается: на длинных фокусах матрице приходится совершать слишком быстрые перемещения со слишком большой амплитудой, и она просто перестаёт успевать за «ускользающей» проекцией.

Кроме того, для высокой точности работы система должна знать точное значение фокусного расстояния объектива, что ограничивает применение старых трансфокаторов, и расстояния фокусировки при малой дистанции, что ограничивает её работу при макросъёмке.

Системы стабилизации с подвижной матрицей:

Konica Minolta - Anti-Shake (AS);

Sony - Super Steady Shot (SSS) - является заимствованием и развитием Anti-Shake от Minolta;

Pentax - Shake Reduction (SR) - разработка Pentax, нашла применение в зеркальных камерах Pentax K100D,K10D и последующих;

Olympus - Image Stabilizer (IS) - применяется в некоторых моделях зеркальных фотокамер и «ультразумах» Olympus.

Электронный (цифровой) стабилизатор изображения.

Существует и EIS (англ. Electronic (Digital) Image Stabilizer - электронная (цифровая) стабилизация изображения). При этом виде стабилизации примерно 40 % пикселей на матрице отводится на стабилизацию изображения и не участвует в формировании картинки. При дрожании видеокамеры картинка «плавает» по матрице, а процессор фиксирует эти колебания и вносит коррекцию, используя резервные пиксели для компенсации дрожания картинки. Эта система стабилизации широко применяется в цифровых видеокамерах, где матрицы маленькие (0,8Мп, 1,3Мп и др.). Имеет более низкое качество, чем прочие типы стабилизации, зато принципиально дешевле, так как не содержит дополнительных механических элементов.

Режимы работы системы стабилизации изображения.

Существует три типичных режима работы системы стабилизации изображения: однократный или кадровый (англ. Shoot only - только при съёмке), непрерывный (англ. Continuous - непрерывно) и режим панорамирования (англ. Panning - панорамирование).

В однократном режиме система стабилизации активируется только на время экспозиции, что, теоретически, наиболее эффективно, так как требует наименьших корректирующих перемещений.

В непрерывном режиме система стабилизации работает постоянно, что облегчает фокусировку в сложных условиях. Однако эффективность работы системы стабилизации при этом может оказаться несколько ниже, поскольку в момент экспозиции корректирующий элемент может оказаться уже смещённым, что снижает его диапазон корректировки. Кроме того, в непрерывном режиме система потребляет больше электроэнергии, что приводит к более быстрому разряду аккумулятора.

В режиме панорамирования система стабилизации компенсирует только вертикальные колебания.

Справедливо полагать, что наличие стабилизации в объективе влияет на стоимость. Поэтому при ограниченном бюджете стоит решить, насколько для вас критичен этот параметр. Стабилизация имеет больший смысл при съемке удаленных объектов, плохой освещенности или длинной выдержке. Соответственно, если вы ищете широкоугольный или портретный объектив для съемки преимущественно статичных объектов, то можете сэкономить на стабилизации.

В некоторых случаях для получения отличного кадра бывает важна быстрая фокусировка на объекте. Для этого производители оснащают некоторые свои объективы более дорогими ультразвуковыми (пьезоэлектрическими) двигателями.

Ультразвуковой двигатель объектива с автофокусом.

Вот список обозначений у различных производителей:

Canon - USM, UltraSonic Motor;

Minolta, Sony - SSM, SuperSonic Motor;

Nikon - SWM, Silent Wave Motor;

Olympus - SWD, Supersonic Wave Drive;

Panasonic - XSM, Extra Silent Motor;

Pentax - SDM, Supersonic Drive Motor;

Sigma - HSM, Hyper Sonic Motor;

Tamron - USD, Ultrasonic Silent Drive, PZD, Piezo Drive.

Назначение объективов.

Существенное значение имеет назначение объектива. Перед тем как приступить к съёмке, всегда возникает вопрос о том, что будем снимать. По назначению объективы разделяются следующим образом:

Портретный объектив - используется для съёмки портретов. Должен давать мягкое изображение без геометрических искажений. В качестве портретных часто используются телеобъективы или объективы с фиксированным фокусным расстоянием в диапазоне 80-200 мм (для 35 мм плёнки). Классическими являются 85 мм и 130 мм. Специализированный портретный объектив спроектирован так, что минимальные аберрации показывает при фокусировке с нескольких метров, то есть именно при съёмке портрета, в ущерб качеству изображения «на бесконечности». Практически обязательным для портретного объектива является большое (лучше, чем 2.8) относительное отверстие, и очень важен характер бокэ;

Макрообъектив - объектив, специально корригированный для съёмки с конечных коротких расстояний. Как правило, применяется для макросъёмки небольших объектов крупным планом, вплоть до масштаба 1:1. Позволяют производить съёмку с повышенным контрастом и резкостью. Обладают меньшей светосилой, чем аналогичные по фокусному расстоянию объективы другого типа. Типичное фокусное расстояние от 50 до 100 мм. Кроме того, обычно имеет специальную оправу;

Длиннофокусный объектив - как правило, используется для съёмки удалённых объектов. Длиннофокусный объектив, в котором расстояние от передней оптической поверхности до задней фокальной плоскости меньше фокусного расстояния, именуется телеобъектив;

Репродукционный объектив - используется при пересъёмке чертежей, технической документации и т. д. Должен обладать минимальными геометрическими искажениями, минимальным виньетированием и минимальной кривизной поля изображения;

Шифт-объектив (объектив со сдвигом, от англ. shift) - используется для архитектурной и иной технической съёмки и позволяет предотвратить искажение перспективы.

Тилт-объектив (объектив с наклоном, от англ. tilt) - используется для получения резкого изображения неперпендикулярных оптической оси объектива протяжённых объектов при макросъёмке, а также для получения художественных эффектов.

Тилт-шифт объектив - класс объективов, сочетающий в себе сдвиг и наклон оптической оси. Позволяет использовать возможности карданных камер в малоформатной фотографии. Крупнейшие производители фототехники имеют в линейке оптики хотя бы один такой объектив, например Canon TS-E 17 F4L.

Стеноп (пинхол) (объектив камеры-обскуры, маленькая дырочка, от англ. pinhole) - используется для съёмок пейзажей или иных объектов с очень большими выдержками и с получением в одном кадре одинаково резкого изображения от макро расстояний до бесконечности;

Софт-объектив (мягкорисующий объектив, от англ. soft) - объектив с недоисправленными аберрациями, обычно сферической, или с вносящими искажения элементами конструкции. Служит для получения эффекта размытости, дымки и т. п. при сохранении резкости. Применяются в портретной съёмке. Немногим близкий эффект дают так называемые «фильтры мягкого фокуса»;

Суперзум (тревел-зум) (англ. travel zoom) - универсальный вариообъектив относительно малого веса и максимального диапазона фокусных расстояний. Используется при пониженных требованиях к качеству снимка и повышенных - к оперативности использования и массе.

Ультразум - суперзум, который отличается повышенными кратностью диапазона фокусных расстояний, обычно начиная с пяти.

Гиперзум - суперзум, кратность диапазона фокусных расстояний которого обычно больше 15. Распространены в профессиональных видеокамерах и компактных фотоаппаратах, например, Fujinon A18x7.6BERM, Angenieux 60x9,5, Nikon Coolpix P500 (кратность 36), Sony Cyber-shot DSC-HX100V (кратность 30), Canon PowerShot SX30 IS (кратность 35), Nikon Coolpix P90 (кратность 24). Качество изображения объектива, необходимое в видеокамерах, особенно стандартной четкости, позволяет строить объективы с большой кратностью. Кроме того, при малой диагонали матриц видеокамер и компактных фотоаппаратов, габариты вариообъектива с большим диапазоном фокусных расстояний несравнимо меньше, чем были бы при таких же параметрах для формата APS-C. Студийные видеокамеры могут оснащаться вариообъективами с кратностью, равной 50 и даже 100.

Способы крепления объективов.

По способу крепления с корпусом прибора (фотоаппарата, кинокамеры, кинопроектора, диапроектора и т. д.) объективы делятся на резьбовые и байонетные - первые крепятся на фланце камеры заворачиванием по резьбе, вторые фиксируются в нём поворотом. В самых простых конструкциях объективы держатся только на трении или зажимаются держателем в виде хомута. Байонет объектива - (от фр. baïonnette - штык) - разновидность соединения, предназначенная для крепления объектива к фотографическому, киносъёмочному аппаратам, видеокамерам и цифровым кинокамерам. Основное преимущество по сравнению с резьбовым креплением - точная ориентация объектива относительно камеры, главным образом, относительно её механических и электрических соединений. Это особенно важно для механической передачи значения установленной диафрагмы в экспонометр и совмещения электрических контактов современных объективов с микропроцессорами. Кроме того, оправа некоторых объективов требует точной ориентации для правильной установки вспомогательного оборудования: устройств для макросъёмки, фоллоу-фокусов и компендиумов. Более технологичное и дешёвое резьбовое крепление в 1950-х годах было вытеснено байонетным, поскольку резьба не обеспечивает достаточной точности взаимной ориентации. Ещё одно преимущество байонета - более высокая оперативность замены объективов.


Сегодня существует много различных типов байонетов, поэтому при покупке объектива (особенно на вторичном рынке) надо убедиться в совместимости этого объектива с вашим фотоаппаратом. Один из двух типов крепления, оставшихся неизменными после появления автофокуса и цифровой фотографии – Nikon F (байонет F). Это стандарт байонетного присоединения объективов к малоформатным однообъективным зеркальным фотоаппаратам, впервые использованный корпорацией Nikon в камере Nikon F в 1959 году, и с некоторыми изменениями применяющийся до настоящего времени, в том числе в цифровых фотоаппаратах. Другой тип байонета К, доживший до наших дней, разработан компанией Asahi Pentax. Остальные крепления считаются устаревшими и заменены принципиально новыми, несовместимыми с ранее выпущенной фотоаппаратурой.

Однако иногда возникает желание использовать в своем творчестве какой-нибудь объектив с устаревшим или неподходящим байонетом (от старого «Зенита», например) со своей зеркальной камерой. Для любителей винтажной оптики и экспериментов существуют различные переходники и адаптеры, позволяющие устанавливать объективы с другим байонетом.

Переходник М42 – Nikon F с линзой и чипом.

Выбор объектива.

Для обычной съемки дома, портретов друзей, уличных сюжетов и многого другого новичку с лихвой хватит стандартного «китового» объектива, который идет в комплекте с камерой. Он обладают фокусными расстояниями 18 - 55 мм или 18 - 105 мм, подходящими для реализации большинства идей. Можно приобрести еще более универсальный объектив, покрывающий весь диапазон от широкоугольников до телевиков (фокусное расстоянием 18-200 мм), например TAMRON AF 18-200/3.5-6.3 XRLD DII, который остается самым легким и компактный в мире зум-объективом.

Если вы тяготеете к фото ремеслу и хотите максимально окунуться в мир фото без особых затрат, то имеет смысл докупить к стандартному объективу фикс-объектив. Например, всеми любимый «полтинник» - объектив с фокусным расстоянием 50 мм или даже 35 мм. С таким объективом вы сможете получить приличное боке, оцените его светосилу и ощутите себя настоящим фотографом, перемещаясь в поисках композиции. Плюс ко всему, он легкий и компактный, так что работать с ним одно удовольствие.

Для съемок удаленных объектов подойдет объектив с фокусным расстоянием 70-300 мм, например, Tamron SP AF 70-300mm F/4-5.6 Di USD:

Для желающих делать макрофотографии существуют недорогие решения в виде объективов вроде:

Существует еще более бюджетный вариант – различные насадки и макрокольца.

Макронасадки – это специальные линзы накручивающиеся на объектив. Дают довольно много искажений.

Реверсивные кольца – это приспособления для закрепления объектива на тушке задом наперед. Увеличение отличное, но отсутствует возможность управления светосилой.

Макрокольца – наиболее подходящий вариант для пробы сил в макрофотографии. Позволяют достичь неплохого увеличения, однако, как и любое дополнительное стекло в системе, дают некоторые искажения и приводят к падению светосилы.

Помимо всех перечисленных объективов существуют «художественные» объективы, которые позволяют получать уникальные, присущие только этим объективам, снимки. Ярким примером может служить линейка объективов Lensbaby.

Надеемся, что материал поможет сделать правильный выбор объектива. Творческих успехов!

Использованы материалы с сайтов:

Http://ru.wikipedia.org

Http://www.320-8080.ru

4223 Я - юный фотограф! 0

Ну что, друзья, вы уже немного освоили свой фотоаппарат? Узнали, какие и для чего нужны у него кнопки на корпусе? Наверное, еще не все понятно. Не отчаивайтесь, вы обязательно со всем разберетесь! Не стесняйтесь спрашивать у взрослых, что вам сложно и не понятно, или писать нам на форуме сайта. Договорились?

Сегодня мы с вами узнаем, для чего нужен фотоаппарату объектив. Заглянем внутрь его конструкции и попытаемся понять, как он работает. Так же мы разберемся, какие бывают объективы и зачем они нужны. Не страшно? Тогда вперед, за знаниями!

Объектив - это круглый бочонок впереди фотокамеры. Если у вас компактная камера - он может прятаться внутрь корпуса при выключении. У остальных камер - зеркальных или беззеркальных - он солидно расположился на своем месте, и его можно даже отсоединить и рассмотреть.

Объектив компактной камеры - он может прятаться!

Для чего нужен этот сложный оптический прибор - объектив? Именно он передает картинку, отраженный от нее свет - внутрь корпуса, на сенсор. И чем лучше у вас объектив - тем круче можно с ним делать фотографии!

ЗАПОМИНАЕМ!

Качество фотографий, как мы уже выяснили в первом уроке, зависит не только от физического размера сенсора, но и от качества объектива. Причем - в большей степени от объектива!

А теперь посмотрим, что же там у объектива внутри. Объектив фотокамеры представляет собой весьма сложную конструкцию. Он состоит из множества стеклянных круглых элементов - линз, изготовленных из специального оптического стекла, металлической оправы и диафрагмы. В простейших объективах используются лишь несколько линз, а в очень дорогих - количество этих элементов может быть десять и больше.

Ни в коем случае, конечно же, не следует пытаться разобрать объектив! Ну и что, что интересно! Если вы не хотите испортить его - оставьте все таким, как его сделали.

Диафрагма в объективе представляет собой заслонку из лепестков с отверстием в центре, которая не дает всему свету попасть на матрицу. Эти лепестки диафрагмы поворачиваются одновременно друг с другом. Диафрагма служит еще и для изменения глубины резко изображаемого пространства или сокращенно ГРИП. Что это такое? Узнаем чуть позже, запоминаем новый термин - ГРИП! Размер отверстия диафрагмы регулируется или автоматически камерой, или в ручную. Значения диафрагмы, которые могут быть настроены на объективе, показаны в его маркировке. Например: f/2.8 или f/ 3.5-5.6.

У объектива не компактной камеры вы можете заметить кольца. В результате поворота одного из колец камера в ручном режиме наводится на резкость. Если же объектив автофокусный - авто означает с автоматической, не ручной фокусировкой - кольцо вращается автоматически благодаря специальному мотору внутри объектива: при нажатии на кнопку для фотографирования (она называется кнопкой спуска затвора) объектив автоматически фокусируется на резкость. Переключение с ручной наводки на резкость на автоматическую делается или на корпусе объектива, или на корпусе (или в меню) самой камеры. Тем, у кого компактная камера - сделать это нельзя.

Переключатель фокусировки на объективе: A - автоматическая; M - ручная (мануальная)

Для чего нужна ручная фокусировка? - спросите вы., ведь вс\наводит на резкость умная электроника фотоаппарата. А бывает, когда ей это сложно сделать или она фокусируется не там, где вы хотите. Вот тогда и пригодится - ручная фокусировка. Едем дальше!

Помимо автофокуса, в конструкции объектива часто встраивается и механизм стабилизации, или его профи называют "стабом". Он помогает получать резкие кадры тогда, когда уже объектив без стаба не справится и на длинной выдержке получится смазанное изображение. Это специальная подвижная линза, которая упраляется той же электроникой фотоаппарата. Очень полезный механизм!

Объектив с переменным фокусным расстоянием (зум-объектив) имеет специальное кольцо, используемое для изменения фокусного расстояния. С помощью такого кольца линзы внутри объектива передвигаются, как на схеме, и можно приблизить или отдалить снимаемый объект в кадре. Сразу скажем, что есть объективы, в которых "приблизить" нельзя - это фикс-объективы, они более качественные, но менее удобные в работе.

ЗАПОМИНАЕМ!

Зум-объектив - с переменным фокусным расстоянием, который может приближать или отдалять объект съемки. Более сложный, тяжелый и часто дорогой объектив, но при изменении фокусного расстояния (зумировании) - качество снимков может меняться. Узнать его можно по маркировке на корпусе. Например: 18-55mm или 70-200mm.

Фикс-объектив - с неизменным фокусным расстоянием, более компактный и качественный объектив, но менее удобный в работе. Узнать его также можно по маркировке, например: 50mm или 35mm.

Один зум может заменить сразу несколько фикс-объективов в вашей фотосумке, но если вам нужно супер-качество - лучше место не экономить, а носить несколько фиксов.

У фотоаппаратов, у которых объектив можно снять и поменять на другой, есть байонет - это крепление объектива к камере. Такие системы крепления у каждой фирмы свои. То есть объектив от Sony, например, нельзя поставит на Canon или Nikon. Если у вас камера позволяет снимать объектив - с помощью взрослых потренируйтесь снимать и ставить объектив на камеру. Подсказываем: для облегчения правильной установки на корпусе камеры и объективе есть специальные точки.

Итак, мы с вами выяснили, что у объектива есть такие характеристики: значение диафрагмы (ее еще называют СВЕТОСИЛОЙ) и фокусное расстояние. Значения этих параметров указываются на корпусе любого объектива. Светосильными называют объективы, у которых f/... - цифра как можно меньше, от 2.8 и далее: 1.8, 1.4, 1.2 - качество фотографий такими объективами заметно лучше, но и цена на них может быть просто фантастическая.

Фотокамеру, если вы задумались о покупке, нужно выбирать с как можно более качественным, светосильным объективом.

Фотоаппараты со сменными объективами часто продаются в комплекте со штатным, "китовым" объективом. Кит, от англ. Kit - набор, комплект; штатный объектив, и не имеет отношения ни к огромному морскому млекопитающему, ни к ужасным группам синих китов в социальных сетях.

От такого объектива лучше тоже отказаться и покупать "боди" - только камеру и отдельно более дорогой, но лучший объектив.

Наиболее качественные фотографии получаются светосильными объективами с фиксированными фокусными расстояниями (фиксами), и именно поэтому большинство профессиональных фотографов предпочитают съемку именно ими.

А теперь, чтобы отдохнуть от сложных терминов, немножко расскажем вам о том, как правильно ухаживать за вашим объективом. Объективы очень не любят грязь и пятна на линзах, которое могут снизить качество ваших фотографий. А уж царапины и вовсе не желательны. Поэтому запомним несколько простых правил:

1. Для ухода за объективом нужно купить специальные салфетки, щеточки-карандаши для чистки (пусть родители спросят в магазине Lenspen - Ленспен), груши для продувки пыли. Это обязательно!

2. Всегда используйте специальную сумку для фотокамеры и объективов. Сумка защитит аппарат от попадания пыли и ударов, которые часто бывают при транспортировке.

3. Ни в коем случае не снимайте грязь или пятна с линз пальцами и не используйте не специальный материал. Это может испортить линзу или ее покрытие.

4. Не дуйте на объектив - микроскопические капельки слюны обязательно попадают на линзу, как бы вы того не хотели.

А теперь - наша "домашка".

1. Внимательно изучить новые слова по теме урока и постараться их запомнить. В дальнейшем вы будете часто их использовать.

2. Практическое задание: изучите объектив вашей фотокамеры, его маркировку. Расскажите нам, что написано на корпусе, какие цифры есть в маркировке и где указано фокусное расстояние, а где - светосила.

Результаты выполнения задания мы ждем на форуме сайта. Там же мы можете задать свои вопросы. До новых встреч, наши юные друзья!

Министерство образования Республики Беларусь

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра электронной техники и технологии

РЕФЕРАТ

На тему:

«Сборка объективов насыпной конструкции. Расчет автоколлимационных точек»

МИНСК, 2008

Типы конструкций объективов оптических приборов. Общие требования к сборке объективов

Разнообразные оптические приборы имеют самые различные конструкции объективов: от двух-, трехлинзовых объективов телескопических приборов до сложных многолинзовых фотообъективов с переменным фокусным расстоянием. Конструктивные особенности объективов накладывают отпечаток на способ их сборки.

Объективы представляют собой центрированные оптические системы, т.е. систему линз или зеркал, центры кривизны сферических поверхностей которых расположены на прямой липни, называемой оптической осью системы.

В зависимости от точности центрирования линз различают следующие основные типы объективов.

1. Объективы «насыпной» конструкции, в которых линзы в оправах при сборке центрируют с максимально возможной точностью относительно посадочных поверхностей оправы и устанавливают затем с минимально возможным зазором в общий корпус объектива без дополнительной юстировки.

2. Объективы со свинчивающимися справами, линзы и оправы которых изготовляют по калибрам и соединяют между собой с минимально допустимыми зазорами. Оправы с линзами соединяют с корпусом объектива резьбой без дополнительной юстировки.

3. Объективы единичных приборов и приборов, выпускаемых мелкими сериями, детали которых подгоняют в процессе сборки, сопровождаемой юстировкой.

Процесс сборки объективов должен обеспечить: получение требуемых параметров объектива (фокусного и рабочего расстояний, разрешающей силы и необходимого качества изображения); надежную и длительную работу объектива в реальных условиях эксплуатации; выпуск необходимого количества объективов в установленные сроки.

Процесс сборки объектива имеет два этапа: предварительную и окончательную сборку.

Предварительная сборка включает в себя:

подготовку механических деталей (промывку и чистку деталей);

сборку механических узлов объектива (ирисовой диафрагмы, фокусировочной оправы объектива);

предварительную сборку блока объектива, т. е. установку и крепление линз в оправах и сборку оправ с линзами в корпусе объектива, при которой обеспечивают необходимую величину межлинзовых воздушных промежутков.

Окончательная сборка включает в себя:

чистку линз в оправах;

установку оправ с линзами в корпусе объектива и центрирование объектива;

сборку механизмов, располагающихся на объективе;

выполнение рабочего расстояния объектива;

окончательную чистку внешних деталей объектива;

контроль параметров объектива в лаборатории и ОТК с оформлением паспорта;

упаковку объектива для отправки в цех сборки фотоаппаратов или на склад готовой продукции.

Приведенная последовательность сборки типична для мелкосерийного изготовления объективов. При индивидуальной сборке объективов возможно совмещение этапов сборки.

При крупносерийном изготовлении объективов указанные этапы сборки разбивают на более мелкие и сборочный процесс часто оформляют в виде конвейерной сборки.

Сборка объектива без последующей юстировки возможна лишь при изготовлении деталей с очень высокой точностью из материалов, полностью отвечающих предъявляемым требованиям. Однако в условиях реального производства размеры деталей объектива имеют отклонения от номинальных величин. Эти отклонения необходимо компенсировать в процессе сборки.

Реальный объектив, изображая предмет, вносит искажения в его форму, цвет, соотношение яркостей его частей. Эти искажения обусловлены:

остаточными аберрациями объектива (искажениями изображения, допускаемыми при расчете объектива);

отклонениями размеров оптических деталей и формы их преломляющих и отражающих поверхностей;

отклонениями преломляющих свойств стекла, возникающими при его варке (изменение показателя преломления по объему стекла);

неточным взаимным расположением оптических деталей в собранном объективе, вызываемым неточностью изготовления оправ и децентрировкой линз;

неодинаковым спектральным пропусканием просветляющих пленок и стекла линз;

влиянием рассеянного света, возникающего в результате отражения света от поверхностей линз и оправ.

Отклонения показателей преломления линз в полученной партии стекла учитывают перед изготовлением оптических деталей путем перерасчета толщин линз, расстояний между линзами и иногда радиусов линз. Сочетание показателей преломления стекла линз в данной партии называется комбинацией и обозначается порядковым номером в сопроводительном документе партии оптических деталей.

Отклонения толщин линз компенсируют, подбирая их таким образом, чтобы по возможности не увеличивать аберраций объектива. При этом в случае необходимости из меняют величину междулинзовых воздушных промежутков. Поэтому к комплекту линз, направляемому на сборку
объектива, прилагают комплектовочную таблицу, в которой указываются номер комбинации парт; и стекла, отклонения толщин линз и окончательные величины воздушных промежутков, которые необходимо выдержать при
сборке объектива.

Отклонения радиуса линзы от номиналы ой величины (так называемой «цвет» поверхности) и отклонения формы поверхности линз проверяют сравнением с эталонной поверхностью при изготовлении линзы и не учитывают при комплектации линз.

Неблагоприятное сочетание перечисленных отклонений приводит к существенному ухудшению качества изображения и к необходимости изменения воздушных промежутков объектива после его сборки.

Дефекты поверхностей линз «(бугры», «ямы», двойная кривизна поверхности, «сорванный цвет») и недопустимая оптическая неоднородность стекла (плавная или в виде «свилей») не могут быть скомпенсированы при сборке объектива.

Деформации поверхностей линз и зеркал при креплении в оправах должны быть устранены перед сборкой, так как ухудшение качества изображения, вызванное их воздействием, в процессе сборки нельзя скомпенсировать.

При чрезмерном ухудшении качества объектива от суммарного воздействия указанных выше причин объектив бракуют и возвращают для устранения этих причин.

Важнейшей операцией при сборке объектива является его центрирование.

Центрированием объектива называется расположение центров кривизны всех оптических поверхностей на одной прямой линии, называемой оптической осью объектива:

Смещение центра кривизны поверхности с оптической оси объектива называется децентрировкой поверхности и приводит к ухудшению качества изображения, образуемого объективом, что выражается в появлении «комы» в центре поля изображения и наклоне плоскости изображения с наилучшей резкостью.

Допустимые значения децентрировки для каждой оптической поверхности вычисляют при расчете объектива, учитывают при разработке конструкции и назначении допусков на изготовление деталей и сборку объектива.

Сборка объективов насыпной конструкции

Метод сборки объективов насыпной конструкции называют автоколлимационным методом сборки. Его применяют для объективов, требующих особенно точного центрирования линз, например сильных микрообъективов, светосильных киносъемочных объективов, широкоугольных фотообъективов.

Метод сборки заключается в центрировании базовых поверхностей оправы относительно оптической оси линзы. Затем оправы с линзами вставляют в корпус объектива с минимальным зазором по диаметру оправ. В результате центры кривизны поверхностей линз будут расположены с достаточной точностью вблизи геометрической оси корпуса объектива, т. е. обеспечивается хорошая центрировка объектива. Конструктивное оформление, объектива, собранного автоколлимационным методом, показано на рис.1.

Линзы, предназначенные для автоколлимационной сборки, в оптическом цехе центрируют с невысокой точностью (0,03-0,1 мм). Оправы для линз изготовляют в механическом цехе с припусками по наружному диаметру и торцам. Затем линзы закрепляют в оправах завальцовкой или резьбовым кольцом.

Рассмотрим чертеж линзы фотообъектив в оправе для автоколлимационной сборки (рис.2).

На чертеже обычно указывают допустимые децентрировки поверхностей А и Б относительно геометрической оси оправы

20**. Допустимые децентрировки берут из оптической схемы объектива. Центры кривизны поверхностей линзы, закрепленной в оправе, расположены относительно оси оправы линзы с децентрировками, превышающими допустимые (так как оправа под линзу изготовлена заранее в механическом цехе по 2-му или 3-му классам точности, а линза имеет децентрировку при изготовлении в оптическом цехе).

Рис.1. Широкоугольный фотообъектив «Руссар МР-2» (

=20мм).

Рис.2. Пример чертежа линзы для автоколлимационной сборки.

Децентрировку можно уменьшить до допустимой величины, если линзу в оправе на специальном центрировочном патроне смещать и разворачивать таким образом, чтобы центры кривизны ее поверхностей совместились с осью вращения шпинделя токарного станка, после чего обработать базовые поверхности оправы. При этом оптическая ось линзы совмещается с геометрической осью оправы с требуемой точностью.

Рассмотрим схематически процесс центрирования линзы. На рис. 3, а изображена линза, установленная в центрировочном патроне. Линза установлена так, чтобы центр кривизны наружной поверхности линзы

был расположен в одной плоскости с центром кривизны О сферической части патрона. Центры кривизны поверхностей линзы и смещены относительно оси шпинделя станка и при вращении шпинделя описывают окружности. Смещения центров кривизны с оси вращения шпинделя наблюдают и измеряют с помощью автоколлимационной центрировочной трубки ЮС-13, разработанной А.А. Забелиным.

Эта краткая заметка родилась как ответ на одно из писем. Ее тема - создание на коленке из двух объективов оптической системы с переменным фокусным расстоянием. Это очень старый, хорошо известный, но уже позабытый способ, как при отсутствии длиннофокусного объектива получить крупное изображение удаленных объектов. Я просто попытался проиллюстрировать его применение с цифровыми зеркальными камерами. О составных насадках для аппаратов с несменной оптикой я писал уже довольно давно в статье «Труба Кеплера - макроконвертер и фоторужье в одном флаконе ».

Рассматриваемая установка была собрана из подручных материалов буквально в течение часа. Результаты имеют скорее познавательный, чем практический интерес. И, тем не менее, мой специфический опыт подсказывает, что иногда подобное знание может пригодиться.

Лирическое отступление 1 . Специфика экспедиции заключается в том, что все что взяли, то взяли; если понадобится что-то еще, то вся надежда на лом и какую-то мать. И хотя образование у нас бесплатное, но знание о том, как воспользоваться этим самым ломом, иногда стоит очень дорого. Так вот, то, что будет описано дальше, может очень пригодиться, если сидя на необитаемом острове, ожидая через пару месяцев смену, вы вдруг обнаружите, что в окрестных водах объявилось лохнесское чудовище. :-)

Итак, есть два объектива и какое-то количество крепежного материала. С помощью первого из них мы можем получить изображение на матовом стекле. А потом переснять его с помощью другого объектива, причем в достаточно широком диапазоне масштабов. Если матовое стекло убрать, то полученная оптическая схема все равно будет работать, правда, с некоторыми ограничениями. А именно: зерна матового стекла не позволяют получить очень детальное изображение, однако они рассевают свет во всех направлениях. Если мы его уберем, то лучи, проходящие через центральную точку, будут вести себя почти так же, как и с ним, а вот лучи, формирующие изображение на периферии кадра, который может быть больше, чем размер задней линзы объектива, распространяются уже только под углом к оптической оси и в сторону от нее. То есть их поймать и использовать для построения вторичного изображения сможет только край передней линзы второго объектива. В результате, будет наблюдаться существенное виньетирование, и яркость вторичного изображения будет от центра к краю резко падать. Чем более мелкий фрагмент первичного изображения мы переснимаем, тем меньше будет проявляться этот эффект.

Ниже приведена фотография получившейся установки. Она состоит из объектива Pentacon с фокусным расстоянием 135 мм, мехов ПЗФ, объектива Индустар-61 с фокусным расстоянием 50 мм, мехов Pentacon и камеры Canon EOS D60 . Суммарная длина примерно 40 см.

Изменяя длину мехов Pentacon (a ), мы меняем общее фокусное расстояние получившейся системы, а, изменяя длину мехов ПЗФ (b ), - наводимся на резкость. Данная оптическая система дает нам прямое изображение объекта, и, следовательно, в видоискателе зеркальной камеры, оно будет перевернутым. Т. о. мы получили простейший объектив с переменным фокусным расстоянием, который, впрочем, собрал воедино все возможные дефекты, с которыми борются при расчете современных вариообъективов. Даже грубая оценка геометрии получившейся системы, т. е. диаметр передней линзы и получившееся фокусное расстояние показывают, что относительное отверстие уменьшится на порядок. Диафрагмирование объективов приведет к виньетированию изображения. Однако при больших увеличениях периферийные участки линз могут и не работать, и в этом случае диафрагмирование может слегка улучшить изображение. Оптимальные значения диафрагм обоих объективов подбираются экспериментально для каждого конкретного значения увеличения. Я пробовал собрать эту оптическую схему и с другими объективами, так, я в качестве второго объектива использовал объектив Гелиос-44. Использование объектива Волна с фокусным расстоянием 80 мм от аппарата Киев 88 в качестве первого объектива (фото в заголовке статьи) дало неплохие результаты, однако предельное увеличение при равном пороговом качестве оказалось меньше. Нижеприведенные снимки сделаны пасмурным вечером 3 сентября 2006 года с балкона московской квартиры. Результаты

Начнем с того, что можно получить с помощью одного объектива Pentacon 135:

Теперь посмотрим, что нам даст составной объектив; начнем с минимального увеличения комбинации Pentacon 135 - Гелиос 44:.

Теперь увеличим расстояние a и посмотрим, что получится:

Миниатюра

Фрагмент